45,748 research outputs found

    Solutions to Reduce Unnecessary Imaging.

    Get PDF

    Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites

    Get PDF
    Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed

    Flat-plate drag measurements with vortex generators in turbulent boundary layer

    Get PDF
    Direct drag measurements were obtained on a flat plate with a spanwise row of vortex generators near the leading edge, to produce an array of stream wise vortices within the approaching turbulent boundary layer. The object was to explore the possibility of modifying the large scale structure of the boundary layer through embedded longitudinal vortices with a view to obtaining a reduction in wall shear. Both obstacle and vane type vortex generators were tested at free stream velocities 40 ft/sec to 130 ft/sec corresponding to plate length Reynolds no. 0.3 million to 0.8 million with a nominal boundary layer thickness of approximately 0.6 in. at the leading edge. A few vortex generator configurations were tested both on and off the plate to measure the total drag as well as the plate drag alone. The obstacle type devices reduced the plate drag, indicating that the wake momentum defect predominated even in the presence of streamwise vortices. The vane type vortex generators however always increased the plate drag

    The general solution to the classical problem of finite Euler Bernoulli beam

    Get PDF
    An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases

    Basic studies on delta wing flow modifications by means of apex fences

    Get PDF
    The effectiveness of apex fences on a 60-deg delta wing at low speeds was experimentally investigated. Resembling highly swept spoilers in appearance, the fences are designed to fold out of the wing apex region upper surface near the leading edges, where they generate a powerful vortex pair. The intense suction of the fence vortices augments lift in the apex region, the resulting positive pitching moment being utilized to trim trailing edge flaps for lift augmentation during approach and landing at relatively low angles of attack. The fences reduce the apex lift at high angles of attack, leading to a desirable nose-down moment. The above projected functions of the apex fence device were validated and quantified through low speed tunnel tests, comprising upper surface pressure surveys on a semispan model and balance measurements on a geometrically similar fully span wing/body configuration. Fence parameters such as area, shape, hinge position and deflection angle were investigated. Typical results are presented indicating the apex fence potential in controlling the longitudinal characteristics of a tail-less delta

    Electronic phase separation in the rare earth manganates, (La1-xLnx)0.7Ca0.3MnO3 (Ln = Nd, Gd and Y)

    Full text link
    All the three series of manganates showsaturation magnetization characteristic of ferromagnetism, with the ferromagnetic Tc decreasing with increasing in x up to a critical value of x, xc (xc = 0.6, 0.3, 0.2 respectively for Nd, Gd, Y). For x > xc, the magnetic moments are considerably smaller showing a small increase around TM, the value of TM decreasing slightly with increase in x or decrease in . The ferromagnetic compositions (x xc) show insulator-metal (IM) transitions, while the compositions with x > xc are insulating. The magnetic and electrical resistivity behavior of these manganates is consistent with the occurrence of phase separation in the compositions around xc, corresponding to a critical average radius of the A-site cation, , of 1.18 A. Both Tc and TIM increase linearly when < rA > > or x xc as expected of a homogenous ferromagnetic phase. Both Tc and TM decrease linearly with the A-site cation size disorder at the A-site as measured by the variance s2. Thus, an increase in s2 favors the insulating AFM state. Percolative conduction is observed in the compositions with > < rAc >. Electron transport properties in the insulating regime for x > xc conforms to the variable range hopping mechanism. More interestingly, when x > xc, the real part of dielectric constant (e') reaches a high value (104-106) at ordinary temperatures dropping to a very small (~500) value below a certain temperature, the value of which decreases with decreasing frequency.Comment: 27 pages; 11 figures, Submitted to J.Phys:Condens Matte

    The solar wind velocity and its correlation with geomagnetic, solar and cosmic ray activity

    Get PDF
    Correlation of plasma velocity with indices of solar and terrestrial activity - cosmic radiatio

    A plausible mechanism for the evolution of helical forms in nanostructure growth

    Get PDF
    The observation of helices and coils in nano-tube/-fiber (NT/NF) syntheses is explained on the basis of the interactions between specific catalyst particles and the growing nanostructure. In addition to rationalizing nonlinear structure, the proposed model probes the interplay between thermodynamic quantities and predicts conditions for optimal growth. Experimental results on the effect of indium catalyst on affecting the coil pitch in NTs and NFs are presented
    corecore